Multi-mW, few-cycle mid-infrared continuum spanning from 500 to 2250 cm-1

Light Sci Appl. 2018 Feb 23:7:17180. doi: 10.1038/lsa.2017.180. eCollection 2018.

Abstract

The demand for and usage of broadband coherent mid-infrared sources, such as those provided by synchrotron facilities, are growing. Since most organic molecules exhibit characteristic vibrational modes in the wavelength range between 500 and 4000 cm-1, such broadband coherent sources enable micro- or even nano-spectroscopic applications at or below the diffraction limit with a high signal-to-noise ratio1, 2, 3. These techniques have been applied in diverse fields ranging from life sciences, material analysis, and time-resolved spectroscopy. Here we demonstrate a broadband, coherent and intrinsically carrier-envelope-phase-stable source with a spectrum spanning from 500 to 2250 cm-1 (-30 dB) at an average power of 24 mW and a repetition rate of 77 MHz. This performance is enabled by the first mode-locked thin-disk oscillator operating at 2 μm wavelength, providing a tenfold increase in average power over femtosecond oscillators previously demonstrated in this wavelength range4. Multi-octave spectral coverage from this compact and power-scalable system opens up a range of time- and frequency-domain spectroscopic applications.