Yeast two- and three-species hybrids and high-sugar fermentation

Microb Biotechnol. 2019 Nov;12(6):1101-1108. doi: 10.1111/1751-7915.13390. Epub 2019 Mar 5.

Abstract

The dominating strains of most sugar-based natural and industrial fermentations either belong to Saccharomyces cerevisiae and Saccharomyces uvarum or are their chimeric derivatives. Osmotolerance is an essential trait of these strains for industrial applications in which typically high concentrations of sugars are used. As the ability of the cells to cope with the hyperosmotic stress is under polygenic control, significant improvement can be expected from concerted modification of the activity of multiple genes or from creating new genomes harbouring positive alleles of strains of two or more species. In this review, the application of the methods of intergeneric and interspecies hybridization to fitness improvement of strains used under high-sugar fermentation conditions is discussed. By protoplast fusion and heterospecific mating, hybrids can be obtained that outperform the parental strains in certain technological parameters including osmotolerance. Spontaneous postzygotic genome evolution during mitotic propagation (GARMi) and meiosis after the breakdown of the sterility barrier by loss of MAT heterozygosity (GARMe) can be exploited for further improvement. Both processes result in derivatives of chimeric genomes, some of which can be superior both to the parental strains and to the hybrid. Three-species hybridization represents further perspectives.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Chimera*
  • Crosses, Genetic*
  • Fermentation
  • Industrial Microbiology / methods
  • Metabolic Engineering / methods*
  • Metabolic Networks and Pathways / genetics
  • Saccharomyces / genetics*
  • Saccharomyces / metabolism*
  • Sugars / metabolism*

Substances

  • Sugars