Impact of hydraulic residence time on nitrate removal in pilot-scale woodchip bioreactors

J Environ Manage. 2019 May 1:237:424-432. doi: 10.1016/j.jenvman.2019.01.025. Epub 2019 Feb 26.

Abstract

Nitrate (NO3-N) export from row crop agricultural systems with subsurface tile drainage continues to be a major water quality concern. Woodchip bioreactors are an effective edge-of-field practice designed to remove NO3-N from tile drainage. The NO3-N removal rate of woodchip bioreactors can be impacted by several factors, including hydraulic residence time (HRT). This study examined the impact of three HRTs, 2 h, 8 h, and 16 h, on NO3-N removal in a set of nine pilot-scale woodchip bioreactors in Central Iowa. NO3-N concentration reduction from the inlet to the outlet was significantly different for all HRTs (p < 0.05). The 16 h HRT removed the most NO3-N by concentration (7.5 mg L-1) and had the highest removal efficiency at 53.8%. The 8 h HRT removed an average of 5.5 mg L-1 NO3-N with a removal efficiency of 32.1%. The 2 h HRT removed an average of 1.3 mg L-1 NO3-N with a removal efficiency of 9.0%. The 2 h HRT had the highest NO3-N mass removal rate (MRR) at 9.0 g m-3 day-1, followed by the 8 h HRT at 8.5 g m-3 day-1, and the 16 h HRT at 7.4 g m-3 day-1, all of which were statistically different (p < 0.05). Significant explanatory variables for removal efficiency were HRT (p < 0.001) and influent NO3-N concentration (p < 0.001), (R2 = 0.80), with HRT accounting for 93% contribution. When paired with results from a companion study, the ideal HRT for the bioreactors was 8 h to achieve maximum NO3-N removal while reducing the impact from greenhouse gas emissions.

Keywords: Hydraulic residence time; Nutrient removal; Pilot-scale; Water quality; Woodchip bioreactors.

MeSH terms

  • Bioreactors*
  • Denitrification*
  • Iowa
  • Nitrates
  • Nitrogen
  • Nitrogen Oxides

Substances

  • Nitrates
  • Nitrogen Oxides
  • Nitrogen