Biosorption Cu (II) by the yeast Saccharomyces cerevisiae

Biotechnol Rep (Amst). 2019 Feb 14:21:e00315. doi: 10.1016/j.btre.2019.e00315. eCollection 2019 Mar.

Abstract

With the industrial and population advances, the generation of effluents containing heavy metals has grown a lot. In this work, the commercial biomass of the yeast Saccharomyces cerevisiae Perlage® BB were carried out as Cu (II) ion biosorbent. The influence of some variables such as metal concentration, pH range, equilibrium time and biomass concentration were evaluated. The biosorption capacity was measured by adsorption isotherms, with the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) models. The characterization of the biomass surface were investigated by Dispersive Energy X-Ray Fluorescence Spectrometry (EDX) and Atomic Force Microscopy (AFM). The results showed that the biomass presented good biosorption efficiency. The best fit of the data was obtained with the Langmuir model, detecting the maximum biosorption capacity of 4.73 mg g-1. By the methods used in the characterization of the biomass surface, it was possible to verify the presence of the Cu (II) ion in the yeast.

Keywords: Biosorption; Potentially toxic metal; Saccharomyces cerevisiae.