Numbers count: How STIM and Orai stoichiometry affect store-operated calcium entry

Cell Calcium. 2019 May:79:35-43. doi: 10.1016/j.ceca.2019.02.002. Epub 2019 Feb 12.

Abstract

Substantial progress has been made in the past several years in establishing the stoichiometries of STIM and Orai proteins and understanding their influence on store-operated calcium entry. Depletion of ER Ca2+ triggers STIM1 to accumulate at ER-plasma membrane junctions where it binds and opens Ca2+ release-activated Ca2+ (CRAC) channels. STIM1 is a dimer, and release of Ca2+ from its two luminal domains is reported to promote their association as well as drive formation of higher-order STIM1 oligomers. The CRAC channel, originally thought to be tetrameric, is now considered to be a hexamer of Orai1 subunits based on crystallographic and electrophysiological studies. STIM1 binding activates CRAC channels in a highly nonlinear way, such that all six Orai1 binding sites must be occupied to account for the activation and signature properties of native channels. The structural basis of STIM1 engagement with the channel is currently unclear, with evidence suggesting that STIM1 dimers bind to individual or pairs of Orai1 subunits. This review examines evidence that has led to points of consensus and debate about STIM1 and Orai1 stoichiometries, and explains the importance of STIM-Orai complex stoichiometry for the regulation of store-operated calcium entry.

Keywords: CRAC channel; Concatemer; Orai; STIM; Stoichiometry; Store-operated calcium entry.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Calcium / chemistry
  • Calcium / metabolism*
  • Calcium Release Activated Calcium Channels / metabolism
  • Cell Membrane / metabolism
  • Endoplasmic Reticulum / metabolism
  • Humans
  • Neoplasm Proteins / chemistry
  • Neoplasm Proteins / metabolism*
  • ORAI1 Protein / chemistry
  • ORAI1 Protein / metabolism*
  • Stromal Interaction Molecule 1 / chemistry
  • Stromal Interaction Molecule 1 / metabolism*

Substances

  • Calcium Release Activated Calcium Channels
  • Neoplasm Proteins
  • ORAI1 Protein
  • ORAI1 protein, human
  • STIM1 protein, human
  • Stromal Interaction Molecule 1
  • Calcium