Repurposing population genetics data to discern genomic architecture: A case study of linkage cohort detection in mountain pine beetle (Dendroctonus ponderosae)

Ecol Evol. 2018 Dec 26;9(3):1147-1159. doi: 10.1002/ece3.4803. eCollection 2019 Feb.

Abstract

Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.

Keywords: genomic architecture; linkage disequilibrium; population genomics.

Associated data

  • Dryad/10.5061/dryad.jn8hj0t