Three-Dimensional Textile Platform for Electrochemical Devices and its Application to Dye-Sensitized Solar Cells

Sci Rep. 2019 Feb 20;9(1):2322. doi: 10.1038/s41598-018-38426-1.

Abstract

The demand for easy-to-use portable electric devices that are combined with essential items in everyday life, such as apparel, has increased. Hence, significant research has been conducted into the development of wearable technology by fabrication of electronic devices with a textile structure based on fiber or fabric. However, the challenge to develop a fabrication method for wearable devices based on weaving or sewing technology still remains. In this study, we have proposed and fabricated a 3-D textile with two electrodes and one spacer in a single sheet of fabric, utilizing a commercial weaving machine. The two electrodes fulfil the role of electron transfer and the spacer between the electrodes circulates electrons and prevents electrical shorting. Hence, the 3-D textile could be applied to a wide range of electrochemical devices. In addition, it is possible to control the textile structure, size and quantity and change the electrode or spacer materials by replacing the thread. We applied the 3-D textile to dye-sensitized solar cells (DSSCs) which has distinctive advantages such as low manufacturing cost, esthetic appearance for interior or exterior application and high power output under relatively weak light illuminations. The 3-D textile DSSCs were fabricated through a continuous process, from manufacturing to encapsulation, using a non-volatile electrolyte and demonstrated a specific power of 1.7% (1 sun, 1.5 A.M.). The 3-D textile DSSCs were electrically connected in parallel and series by twisting, stainless steel wires, which were used as the weft, and a light-emitting diode lamp was turned on using 3-D textile DSSCs connected in series. This study represents the first stage in the development and application of wearable textile devices.