Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos

J Cell Physiol. 2019 Aug;234(10):17370-17381. doi: 10.1002/jcp.28357. Epub 2019 Feb 20.

Abstract

Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species. In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10-9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome-wide expression analysis of genes in melatonin-treated and nontreated oocytes was also conducted by high-throughput RNA sequencing. Our results indicated that melatonin ameliorates oocyte oxidative stress and improves subsequent in vitro development of bovine cloned embryos.

Keywords: cattle; melatonin; oocyte development; reactive oxygen species (ROS); somatic cell nuclear transfer (SCNT).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Blastocyst / drug effects
  • Blastocyst / metabolism
  • Cattle
  • Cloning, Organism / methods
  • Embryonic Development / drug effects*
  • Embryonic Development / genetics
  • In Vitro Oocyte Maturation Techniques / methods
  • Melatonin / pharmacology*
  • Oocytes / drug effects*
  • Oocytes / metabolism
  • Oogenesis / drug effects*
  • Oxidative Stress / drug effects
  • Reactive Oxygen Species / metabolism

Substances

  • Reactive Oxygen Species
  • Melatonin