Ba2ScHO3: H- Conductive Layered Oxyhydride with H- Site Selectivity

Inorg Chem. 2019 Apr 1;58(7):4431-4436. doi: 10.1021/acs.inorgchem.8b03593. Epub 2019 Feb 20.

Abstract

Hydride (H-) conduction is a new frontier related to hydrogen transport in solids. Here, a new H- conductive oxyhydride Ba2ScHO3 was successfully synthesized using a high-pressure technique. Powder X-ray and neutron diffraction experiments investigated the fact that Ba2ScHO3 adopts a K2NiF4-type structure with H- ions preferentially occupying the apical sites, as supported by theoretical calculations. Electrochemical impedance spectra showed that Ba2ScHO3 exhibited H- conduction and a conductivity of 5.2 × 10-6 S cm-1 at 300 °C. This value is much higher than that of BaScO2H, which has an ideal perovskite structure, suggesting the advantage of layered structures for H- conduction. Tuning site selectivity of H- ions in layered oxyhydrides might be a promising strategy for designing fast H- conductors applicable for novel electrochemical devices.