Integration of Copper-Based and Reduced-Risk Fungicides for Control of Blumeriella jaapii on Sour Cherry

Plant Dis. 2007 Mar;91(3):294-300. doi: 10.1094/PDIS-91-3-0294.

Abstract

Practical resistance to sterol demethylation inhibitor (DMI) fungicides among populations of Blumeriella jaapii, the cherry leaf spot (CLS) pathogen, was documented in 2005. In the present study, strategies to reduce selection for DMI-resistant strains of B. jaapii and adapt to possible restrictions on the use of chlorothalonil are described. Ten field trials were conducted on the sour cherry cultivars Balaton and Montmorency to test the efficacy of integrating respiration-inhibitor and copper-based fungicides into spray programs. Programs that included up to three sprays of copper-based fungicides were among the most effective for controlling CLS, although leaf phy-totoxicity was sometimes observed. Under high disease pressure, eliminating chlorothalonil compromised CLS control. 'Balaton' and 'Montmorency' did not differ in the percentage of leaves with CLS or defoliation resulting from CLS. The physical modes of action of representative DMI, QoI, and copper-based fungicides were evaluated in a leaf disk assay. Trifloxystrobin, a QoI fungicide, provided the best protection against infection by B. jaapii. All fungicides were more effective than water when applied 46 h postinfection, although differences were not statistically significant in one of two trials. Tebuconazole, a DMI, was the only fungicide that was more effective than water in preventing resporulation from existing lesions in both trials. Isolates of B. jaapii, which varied in DMI-sensitivity, all were sensitive to copper in vitro.