Lipid lateral self-diffusion drop at liquid-gel phase transition

Phys Rev E. 2019 Jan;99(1-1):012414. doi: 10.1103/PhysRevE.99.012414.

Abstract

A drop of lipid lateral self-diffusion coefficient at the liquid-gel phase transition in lipid membranes is calculated. So far this drop was missing theoretical description. Our microscopic model captures so-called subdiffusion regime, which takes place on 1 ps-100 ns timescale and reveals a jump of self-diffusion coefficient. Calculation of the jump is based on our recent study of liquid-gel phase transition. Subdiffusive regime is described within the free volume theory. Calculated values of self-diffusion coefficient are in agreement with quasielastic neutron scattering measurements. Self-diffusion coefficient is found to be composed of two factors: one is related to an area per lipid change at the phase transition, and the other one is due to an order of magnitude change in the stiffness of entropic repulsive potential.