Inositol 1,4,5-triphosphate receptor is selectively expressed in cerebellum but not cerebellum-like structures of the elasmobranch fish, Leucoraja erinacea

Heliyon. 2019 Jan 31;5(1):e01176. doi: 10.1016/j.heliyon.2019.e01176. eCollection 2019 Jan.

Abstract

The Inositol 1,4,5-trisphosphate receptor type 1 protein (Ip3r1) performs an essential role for the induction of cerebellar long-term depression. Here, I describe the use of RT-PCR, qPCR, western blotting and immunohistochemistry to assay Ip3r1 gene expression and localize Ip3r1 protein in the hindbrain of the elasmobranch fish, Leucoraja erinacea. Elasmobranchs are representatives of the most basal, yet extant lineage of gnathostomes, or jawed vertebrates. The cerebellum is a synapomorphy for gnathostomes and thus elasmobranch cerebellar physiology may serve as a proxy for the ancestral state of other jawed vertebrates. LeIp3r1 is selectively expressed in the cerebellum of the little skate and the resultant protein is localized to Purkinje cells. If Ip3r1 performs the same functions in the skate cerebellum as in the mammalian cerebellum, then parallel fiber-Purkinje cell long-term depression through Ip3r1 mediated intracellular calcium regulation may be a conserved feature of cerebellar physiology. Cerebellum and surrounding hindbrain regions termed cerebellum-like structures share a common developmental genetic toolkit. LeIp3r1 expression was lowly detected in cerebellum-like structures indicating that although generatively homologous, the cerebellum and cerebellum-like structures do not share a complete overlap of common expression. Because of the little skate's important phylogenetic placement, performing molecular methodologies to assay targeted gene expression and determine protein localization in the hindbrain can be valuable for our understanding of cerebellar evolution and comparative neural development.

Keywords: Anatomy; Cell biology; Evolution; Neuroscience.