ATL3 Is a Tubular ER-Phagy Receptor for GABARAP-Mediated Selective Autophagy

Curr Biol. 2019 Mar 4;29(5):846-855.e6. doi: 10.1016/j.cub.2019.01.041. Epub 2019 Feb 14.

Abstract

The endoplasmic reticulum (ER) consists of the nuclear envelope and both peripheral ER sheets and a peripheral tubular network [1, 2]. In response to physiological or pathological conditions, receptor-mediated selective ER-phagy, engulfing specific ER subdomains or components, is essential for ER turnover and homeostasis [3-6]. Four mammalian receptors for ER-phagy have been reported: FAM134B [7], reticulon 3 (RTN3) [8], SEC62 [9], and CCPG1 [10]. However, these ER-phagy receptors function in subcellular- and tissue- or physiological- and pathological-condition-specific manners, so the diversity of ER-phagy receptors and underlying mechanisms remain largely unknown [3, 4]. Atlastins (ATL1, ATL2, and ATL3), in mammals, are a class of membrane-bound, dynamin-like GTPases that function in ER fusion [11, 12]. ATL1 is expressed mainly in the central nervous system, while ATL2 and ATL3 are more ubiquitously distributed [13]. Recent studies showed that ATL2 mainly affects ER morphology by promoting ER fusion, whereas alterations in ER morphology are hardly detectable after ATL3 depletion [14, 15]. Here, we show that ATL3 functions as a receptor for ER-phagy, promoting tubular ER degradation upon starvation. ATL3 specifically binds to GABARAP, but not LC3, subfamily proteins via 2 GABARAP interaction motifs (GIMs). ATL3-GABARAP interaction is essential for ATL3 to function in ER-phagy. Moreover, hereditary sensory and autonomic neuropathy type I (HSAN I)-associated ATL3 mutations (Y192C and P338R) disrupt ATL3's association with GABARAP and impair ATL3's function in ER-phagy, suggesting that defective ER-phagy is involved in HSAN I. Therefore, we reveal a new ATL3 function for GABARAP-mediated ER-phagy in the degradation of tubular ER.

Keywords: ATL3; ER-phagy receptors; GABARAP; selective autophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis Regulatory Proteins / genetics*
  • Apoptosis Regulatory Proteins / metabolism
  • Autophagy / genetics*
  • COS Cells
  • Chlorocebus aethiops
  • Endoplasmic Reticulum / physiology
  • GTP Phosphohydrolases / genetics*
  • GTP Phosphohydrolases / metabolism
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Microtubule-Associated Proteins / genetics*
  • Microtubule-Associated Proteins / metabolism

Substances

  • Apoptosis Regulatory Proteins
  • GABARAP protein, human
  • Microtubule-Associated Proteins
  • GTP Phosphohydrolases
  • ATL3 protein, human