Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway

J Cell Biochem. 2019 Jul;120(7):11642-11650. doi: 10.1002/jcb.28444. Epub 2019 Feb 14.

Abstract

Increasing evidence have proved that long noncoding RNAs (lncRNAs) play significant roles in tumorigenesis and development of various cancers. However, the effect of small nucleolar RNA host gene 20 (SNHG20) on the progression of esophageal squamous cell carcinoma (ESCC) remains to be discovered. Herein, we aim to find out the function and the possible mechanism of SNHG20 in ESCC progression. In our study, we demonstrate that SNHG20 is markedly upregulated in ESCC tissues and cell lines. Besides, the level of SNHG20 is closely associated with tumor size, lymph node metastasis, TNM stage, and tumor grade. In addition, SNHG20 level is an independent predictor for clinical outcomes of ESCC patients. Then the gain- and loss-of-function assays reveal that SNHG20 overexpression promotes cell proliferation, migration, invasion, and epithelial-mesenchymal transition as well as represses apoptosis, whereas depletion of SNHG20 exhibits opposite effects. Moreover, we uncover that SNHG20 modulates the expression of ataxia telangiectasia-mutated kinase (p-ATM), p-JAK1/2, and programmed cell death 1 ligand 1 (PD-L1) in ESCC cells and ATM upregulation restores the suppressive effect of SNHG20 inhibition on ESCC progression. Therefore, we conclude that SNHG20 serves as a carcinogen in ESCC by promoting growth and metastasis via ATM-JAK-PD-L1 pathway, supplying a possibly effective therapeutic target for ESCC.

Keywords: ATM-JAK-PD-L1 pathway; epithelial-mesenchymal transition; esophageal squamous cell carcinoma; metastasis; proliferation; small nucleolar RNA host gene 20.