Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system

Acta Pharm Sin B. 2019 Jan;9(1):167-176. doi: 10.1016/j.apsb.2018.08.006. Epub 2018 Sep 3.

Abstract

Low targeting efficiency limits the applications of nanoparticles in cancer therapy. The fact that mesenchymal stem cells (MSC) trapped in the lung after systemic infusion is a disadvantage for cell therapy purposes. Here, we utilized MSC as lung cancer-targeted drug delivery vehicles by loading nanoparticles (NP) with anti-cancer drug. MSC showed a higher drug intake capacity than fibroblasts. In addition, MSC showed predominant lung trapping in both rabbit and monkey. IR-780 dye, a fluorescent probe used to represent docetaxel (DTX) in NP, delivered via MSC accumulated in the lung. Both in vitro MSC/A549 cell experiments and in vivo MSC/lung cancer experiments validated the intercellular transportation of NP between MSC and cancer cells. In vivo assays showed that the MSC/NP/DTX drug delivery system exerted primary tumor inhibition efficiency similar to that of a NP/DTX drug system. Collectively, the MSC/NP drug delivery system is promising for lung-targeted drug delivery for the treatment of lung cancer and other lung-related diseases.

Keywords: Drug delivery; KrasG12D; Lung cancer; Mesenchymal stem cells; Nanoparticle.