Digging for DNA at depth: rapid universal metabarcoding surveys (RUMS) as a tool to detect coral reef biodiversity across a depth gradient

PeerJ. 2019 Feb 6:7:e6379. doi: 10.7717/peerj.6379. eCollection 2019.

Abstract

Background: Effective biodiversity monitoring is fundamental in tracking changes in ecosystems as it relates to commercial, recreational, and conservation interests. Current approaches to survey coral reef ecosystems center on the use of indicator species and repeat surveying at specific sites. However, such approaches are often limited by the narrow snapshot of total marine biodiversity that they describe and are thus hindered in their ability to contribute to holistic ecosystem-based monitoring. In tandem, environmental DNA (eDNA) and next-generation sequencing metabarcoding methods provide a new opportunity to rapidly assess the presence of a broad spectrum of eukaryotic organisms within our oceans, ranging from microbes to macrofauna.

Methods: We here investigate the potential for rapid universal metabarcoding surveys (RUMS) of eDNA in sediment samples to provide snapshots of eukaryotic subtropical biodiversity along a depth gradient at two coral reefs in Okinawa, Japan based on 18S rRNA.

Results: Using 18S rRNA metabarcoding, we found that there were significant separations in eukaryotic community assemblages (at the family level) detected in sediments when compared across different depths ranging from 10 to 40 m (p = 0.001). Significant depth zonation was observed across operational taxonomic units assigned to the class Demospongiae (sponges), the most diverse class (contributing 81% of species) within the phylum Porifera; the oldest metazoan phylum on the planet. However, zonation was not observed across the class Anthozoa (i.e., anemones, stony corals, soft corals, and octocorals), suggesting that the former may serve as a better source of indicator species based on sampling over fine spatial scales and using this universal assay. Furthermore, despite their abundance on the examined coral reefs, we did not detect any octocoral DNA, which may be due to low cellular shedding rates, assay sensitivities, or primer biases.

Discussion: Overall, our pilot study demonstrates the importance of exploring depth effects in eDNA and suggest that RUMS may be applied to provide a baseline of information on eukaryotic marine taxa at coastal sites of economic and conservation importance.

Keywords: 18S rRNA; Anthozoa; Community structure; Demospongiae; Environmental DNA; Eukaryote; Porifera; Sponge loop.

Associated data

  • figshare/10.6084/m9.figshare.7453172.v1
  • Dryad/10.5061/dryad.37qv5rd

Grants and funding

This study was funded by the Pawsey Supercomputing Centre, the Australian Research Council (LP160100839 and LP16101508), a Joint Usage and Collaborative Research Grant from the Tropical Biosphere Research Center (TBRC) at the University of the Ryukyus to Joseph D. DiBattista and James D. Reimer, as well as a Curtin University Early Career Research Fellowship (ECRF) to Joseph D. DiBattista and an Environment and Agriculture Visiting Scholarship to James D. Reimer. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.