Cymerus™ iPSC-MSCs significantly prolong survival in a pre-clinical, humanized mouse model of Graft-vs-host disease

Stem Cell Res. 2019 Mar:35:101401. doi: 10.1016/j.scr.2019.101401. Epub 2019 Feb 1.

Abstract

The immune-mediated tissue destruction of graft-vs-host disease (GvHD) remains a major barrier to greater use of hematopoietic stem cell transplantation (HSCT). Mesenchymal stem cells (MSCs) have intrinsic immunosuppressive qualities and are being actively investigated as a therapeutic strategy for treating GvHD. We characterized Cymerus™ MSCs, which are derived from adult, induced pluripotent stem cells (iPSCs), and show they display surface markers and tri-lineage differentiation consistent with MSCs isolated from bone marrow (BM). Administering iPSC-MSCs altered phosphorylation and cellular localization of the T cell-specific kinase, Protein Kinase C theta (PKCθ), attenuated disease severity, and prolonged survival in a humanized mouse model of GvHD. Finally, we evaluated a constellation of pro-inflammatory molecules on circulating PBMCs that correlated closely with disease progression and which may serve as biomarkers to monitor therapeutic response. Altogether, our data suggest Cymerus iPSC-MSCs offer the potential for an off-the-shelf, cell-based therapy to treat GvHD.

Keywords: Graft-vs-host disease; Humanized mouse model; Induced pluripotent stem cell; Mesenchymal stem cell; PKCθ.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Female
  • Graft vs Host Disease* / metabolism
  • Graft vs Host Disease* / pathology
  • Graft vs Host Disease* / therapy
  • Hematopoietic Stem Cell Transplantation*
  • Humans
  • Induced Pluripotent Stem Cells* / metabolism
  • Induced Pluripotent Stem Cells* / pathology
  • Induced Pluripotent Stem Cells* / transplantation
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells* / metabolism
  • Mesenchymal Stem Cells* / pathology
  • Mice
  • Mice, Inbred NOD