Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice

Neurobiol Learn Mem. 2020 Apr:170:106995. doi: 10.1016/j.nlm.2019.02.005. Epub 2019 Feb 5.

Abstract

Calpain-1 and calpain-2 are involved in the regulation of several signaling pathways and neuronal functions in the brain. Our recent studies indicate that calpain-1 is required for hippocampal synaptic plasticity, including long-term depression (LTD) and long-term potentiation (LTP) in field CA1. However, little is known regarding the contributions of calpain-1 to cerebellar synaptic plasticity. Low frequency stimulation (LFS, 5 Hz, 5 min)-induced LTP at parallel fibers to Purkinje cell synapses was markedly impaired in cerebellar slices from calpain-1 knock-out (KO) mice. Application of a selective calpain-2 inhibitor enhanced LFS-induced LTP in both wild-type (WT) and calpain-1 KO mice. Three protocols were used to induce LTD at these synapses: LFS (1 Hz, 15 min), perfusion with high potassium and glutamate (K-Glu) or dihydroxyphenylglycine (DHPG), a mGluR1 agonist. All three forms of LTD were impaired in calpain-1 KO mice. DHPG application stimulated calpain-1 but not calpain-2 in cerebellar slices, and DHPG-induced LTD impairment was reversed by application of a protein phosphatase 2A (PP2A) inhibitor, okadaic acid. As in hippocampus, BDNF induced calpain-1 activation and PH domain and Leucine-rich repeat Protein Phosphatase 1/suprachiasmatic nucleus oscillatory protein (PHLPP1/SCOP) degradation followed by extracellular signal-regulated kinase (ERK) activation, as well as calpain-2 activation leading to degradation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in cerebellar slices. The role of calpain-1 in associative learning was evaluated in the delay eyeblink conditioning (EBC). Calpain-1 KO mice exhibited significant learning impairment in EBC during the first 2 days of acquisition training. However, after 5 days of training, the percentage of conditioned responses (CRs) between calpain-1 KO and WT mice was identical. Both calpain-1 KO and WT mice exhibited typical extinction patterns. Our results indicate that calpain-1 plays critical roles in multiple forms of synaptic plasticity and associative learning in both hippocampus and cerebellum.

Keywords: Calpain-1; Cerebellum; Eyeblink conditioning; LTD; LTP; Synaptic plasticity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Brain-Derived Neurotrophic Factor / metabolism
  • Calpain / genetics
  • Calpain / physiology*
  • Cerebellum / physiology*
  • Conditioning, Eyelid / physiology*
  • Male
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Neuronal Plasticity*
  • PTEN Phosphohydrolase / metabolism
  • Purkinje Cells / physiology
  • Signal Transduction

Substances

  • Bdnf protein, mouse
  • Brain-Derived Neurotrophic Factor
  • PTEN Phosphohydrolase
  • Pten protein, mouse
  • Calpain
  • Capn1 protein, mouse