AHLs-produced bacteria in refrigerated shrimp enhanced the growth and spoilage ability of Shewanella baltica

J Food Sci Technol. 2019 Jan;56(1):114-121. doi: 10.1007/s13197-018-3464-8. Epub 2018 Nov 8.

Abstract

Shewanella baltica is the predominant bacteria in spoiled shrimp (Litopenaeus vannamei), however, the spoilage ability and the mechanism of S. baltica is still unknown. S. baltica can't produce the signal molecule of acyl-homoserine-lactones (AHLs), so the aim of this study was to investigate how wild type S. baltica SA03 (WT SA03) eavesdrop exogenous AHLs to enhance its spoilage ability through LuxR receptor. The results indicated that Aeromonas spp. (Aer), Acinetobacter spp. (Aci) and Serratia spp. (Ser) isolated from refrigerated shrimp can produce different AHLs. WT SA03 can eavesdrop the AHLs of Aer (C4-HSL), Aci (O-C6-HSL) and Ser (C6-HSL, O-C6-HSL) to enhance its growth, especially Ser. Exogenous C4-HSL and C6-HSL enhanced biofilm formation of WT SA03, and C6-HSL and O-C6-HSL enhanced thioredoxin reductase trxB mRNA expression. However, the luxR mutant of WT SA03 (ΔluxR SA03) lost or weakened the role of using environmental AHLs. In vivo experiments, the lag time of WT SA03 was shortened by 6.4 h, 6.2 h and 14.4 h by co-inoculated with Aer, Aci and Ser, respectively. The total volatile basic nitrogen (TVB-N) were significantly enhanced in the samples co-inoculated with WT SA03 and Aer (or Aci, Ser) than those of ΔluxR SA03 and Aer (or Aci, Ser) (p < 0.05). The results showed that S. baltica SA03 can utilize AHLs produced by other bacteria to enhance its growth and spoilage ability through LuxR receptor system. Quorum sensing based on AHLs of bacteria might as the potential targets for food spoilage control.

Keywords: Acyl-homoserine-lactones; Eavesdropping; Quorum sensing; Shewanella baltica; Spoilage ability.