Study on four metal organic frameworks as cleanup adsorbents for polycyclic aromatic hydrocarbons determined by GC-MS/MS

Mikrochim Acta. 2019 Feb 2;186(3):154. doi: 10.1007/s00604-019-3271-6.

Abstract

A new application of MOFs as adsorbents in the cleanup procedure of polycyclic aromatic hydrocarbons (PAHs) in soils was explored. Four MOFs, specifically MIL-101(Cr), MIL-125(Ti), MIL-100(Fe) and UiO-66(Zr), were synthesized and characterized. A screening study was carried out to select the best adsorbent for the purification of sixteen PAHs in complex soil extract. It is found that the nature of metal ion, pore size, surface area and surface charge affect the purification efficiencies of the various MOFs. MIL-101(Cr) was then selected because of its best purification efficiency. The effects of amount of adsorbent, cleanup solvent and cleanup time on cleanup efficiency were investigated. Under the optimum conditions, the matrix effect of the target analytes was reduced by more than 65%. The method was then combined with ultrasonic extraction and quantitation by gas chromatography with triple quadrupole mass spectrometric detection. The method allows for the determination of PAHs in soils with linear in the range of 5-5000 ng g-1 and with LODs between 50 and 420 pg g-1. The method was applied to the analysis of (spiked) soil samples, and results compared well with the established EPA method. Graphical abstract Schematic presentation of metal organic frameworks (MOF) as cleanup adsorbents for purifying polycyclic aromatic hydrocarbons in soil organic matter (SOM) and further determined by gas chromatography with triple quadrupole mass spectrometry detection (GC-MS/MS).

Keywords: Environment; MIL-100(Fe); MIL-101(Cr); MIL-125(Ti); Matrix effect; Primary secondary amine sorbent; Purification; Soil; UiO-66(Zr); Ultrasonic extraction.

Publication types

  • Research Support, Non-U.S. Gov't