ESE1 expression correlates with neuronal apoptosis in the hippocampus after cerebral ischemia/reperfusion injury

Neural Regen Res. 2019 May;14(5):841-849. doi: 10.4103/1673-5374.249232.

Abstract

Epithelial-specific ETS-1 (ESE1), a member of the ETS transcription factor family, is widely expressed in multiple tissues and performs various functions in inflammation. During neuroinflammation, ESE1 promotes neuronal apoptosis; however, the expression and biological functions of ESE1 remain unclear after cerebral ischemia/reperfusion. We performed in vivo and in vitro experiments to explore the role of ESE1 in cerebral ischemic injury. A modified four vessel occlusion method was used in adult Sprague-Dawley rats. At 6, 12, 24, 48, and 72 hours after model induction, the hippocampus was collected for analysis. Western blot assays and immunohistochemistry showed that the expression of ESE1, phosphorylated p65 and active caspase-3 was significantly up-regulated after ischemia. Double immunofluorescence staining indicated that ESE1 and NeuN were mostly co-located in the hippocampus after ischemia. Furthermore, ESE1 was also co-expressed with active caspase-3. PC12 cells were stimulated with cobalt chloride (CoCl2) to establish a chemical hypoxia model. After ESE1 knockdown by siRNA for 6 hours, cell viability was detected by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. The levels of ESE1, phosphorylated p65 and active caspase-3 were also remarkably increased in PC12 cells after CoCl2 stimulation. After ESE1 knockdown, PC12 cell viability was increased after hypoxia. siRNA knockdown of ESE1 decreased the level of p-p65 and active caspase-3 after CoCl2 stimulation. These data reveal that ESE1 levels are elevated in the hippocampus after cerebral ischemia/reperfusion injury. This may play a role in neuronal apoptosis via activation of the nuclear factor-κB pathway.

Keywords: caspase-3; cerebral ischemia/reperfusion; cobalt chloride (CoCl2); epithelial specific ETS-1; inflammation; neural regeneration; neuroprotective effects; nuclear factor-κB; siRNA transfection; stroke.