Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats

J Nanobiotechnology. 2019 Jan 25;17(1):18. doi: 10.1186/s12951-019-0451-9.

Abstract

Background: Cyclosporin A (CsA) is a promising therapeutic drug for myocardial ischemia reperfusion injury (MI/RI) because of its definite inhibition to the opening of mitochondrial permeability transition pore (mPTP). However, the application of cyclosporin A to treat MI/RI is limited due to its immunosuppressive effect to other normal organ and tissues. SS31 represents a novel mitochondria-targeted peptide which can guide drug to accumulate into mitochondria. In this paper, mitochondria-targeted nanoparticles (CsA@PLGA-PEG-SS31) were prepared to precisely deliver cyclosporin A into mitochondria of ischemic cardiomyocytes to treat MI/RI.

Results: CsA@PLGA-PEG-SS31 was prepared by nanoprecipitation. CsA@PLGA-PEG-SS31 showed small particle size (~ 50 nm) and positive charge due to the modification of SS31 on the surface of nanoparticles. CsA@PLGA-PEG-SS31 was stable for more than 30 days and displayed a biphasic drug release pattern. The in vitro results showed that the intracellular uptake of CsA@PLGA-PEG-SS31 was significantly enhanced in hypoxia reoxygenation (H/R) injured H9c2 cells. CsA@PLGA-PEG-SS31 delivered CsA into mitochondria of H/R injured H9c2 cells and subsequently increased the viability of H/R injured H9c2 cell through inhibiting the opening of mPTP and production of reactive oxygen species. In vivo results showed that CsA@PLGA-PEG-SS31 accumulated in ischemic myocardium of MI/RI rat heart. Apoptosis of cardiomyocyte was alleviated in MI/RI rats treated with CsA@PLGA-PEG-SS31, which resulted in the myocardial salvage and improvement of cardiac function. Besides, CsA@PLGA-PEG-SS31 protected myocardium from damage by reducing the recruitment of inflammatory cells and maintaining the integrity of mitochondrial function in MI/RI rats.

Conclusion: CsA@PLGA-PEG-SS31 exhibited significant cardioprotective effects against MI/RI in rats hearts through protecting mitochondrial integrity, decreasing apoptosis of cardiomyocytes and myocardial infract area. Thus, CsA@PLGA-PEG-SS31 offered a promising therapeutic method for patients with acute myocardial infarction.

Keywords: Cyclosporin A; Mitochondria-targeted peptide; Mitochondrial permeability transition pore; Mitochondrial targeting; Myocardial ischemia/reperfusion injury.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Cell Line
  • Cyclosporine / administration & dosage*
  • Cyclosporine / chemistry*
  • Cyclosporine / pharmacokinetics
  • Cyclosporine / pharmacology
  • Disease Models, Animal
  • Drug Carriers / administration & dosage
  • Drug Carriers / chemistry*
  • Drug Carriers / pharmacokinetics
  • Drug Carriers / pharmacology
  • Drug Delivery Systems*
  • Mitochondria / drug effects
  • Mitochondria / metabolism*
  • Mitochondria / pathology
  • Mitochondrial Membrane Transport Proteins / drug effects
  • Mitochondrial Permeability Transition Pore
  • Myocardial Reperfusion Injury / drug therapy*
  • Myocardium / metabolism
  • Myocardium / pathology
  • Myocytes, Cardiac / drug effects
  • Myocytes, Cardiac / metabolism
  • Myocytes, Cardiac / pathology
  • Oligopeptides / chemistry*
  • Particle Size
  • Rats

Substances

  • Drug Carriers
  • Mitochondrial Membrane Transport Proteins
  • Mitochondrial Permeability Transition Pore
  • Oligopeptides
  • arginyl-2,'6'-dimethyltyrosyl-lysyl-phenylalaninamide
  • Cyclosporine