The role of soil mineralogy on oral bioaccessibility of lead: Implications for land use and risk assessment

Sci Total Environ. 2019 Mar 20:657:1468-1479. doi: 10.1016/j.scitotenv.2018.12.148. Epub 2018 Dec 11.

Abstract

Understanding the oral bioaccessibility of lead (Pb) present in soils in urbanized areas is important for the human exposure risk assessment. In particular, the role of the soil-mineralogy in the oral bioaccessibility has not been extensively studied. To investigate bioaccessibility, five types of periurban soils were collected, samples were spiked with the same amount of lead-chromates from traffic paint, and subjected to the in vitro Physiological Based Extraction Test (PBET). Ten samples of urban topsoils were collected at elementary schools playgrounds, Pb-bioaccessibility was measured, and a prediction equation for bioaccessibility was constructed. Mineralogy, and metal content were identified with a combination of X-ray powder diffraction, scanning electron microscopy, and portable X-ray fluorescence techniques. Traffic paint sample is made of 15% quartz (SiO2), 13% crocoite (PbCrO4), 55% calcite (CaCO3), and 17% kaolinite (Al2Si2O5(OH)4) and it contains high metal content (Pb, Cr, Zn, and Ca). Studied soils are characterized by variable amounts of acid-neutralizing minerals (carbonates) and low metal content. Spiked soils contained almost equal concentration of Pb, Cr, and Zn, because the contribution of these metals is from the added paint. However, obtained Pb-bioaccessibility at gastric and intestinal conditions are variable (40 to 51% gastric, 24 to 70.5% intestinal). Carbonate content shows significant correlation (p < 0.05) with Cr, Ca, calcite, crocoite, and Pb-bioaccessible at gastric conditions. Correlation of Pb-bioaccessible at intestinal conditions is significant (p < 0.05) with kaolinite. Variability of Pb-bioaccesibility in urban environments is commonly associated to differences in Pb-sources, however, our results show that the bioaccessibility of the same pollutant behaves different for each soil type. This suggests that soil mineralogy may play a role in Pb-releasing at gastrointestinal conditions. Soil information about mineralogical characteristics from this study may help to reduce exposure to lead from urban sources if data are incorporated into urban planning.

Keywords: Lead chromates; Mineralogy; Physiologically-based extraction test (PBET); Risk assessment; Soils; Urban areas.

MeSH terms

  • Cities
  • Environmental Monitoring
  • Lead / analysis*
  • Lead / metabolism
  • Mexico
  • Risk Assessment*
  • Soil / chemistry*
  • Soil Pollutants / analysis*
  • Soil Pollutants / metabolism

Substances

  • Soil
  • Soil Pollutants
  • Lead