Fish under pressure: Examining behavioural responses of Iberian barbel under simulated hydropeaking with instream structures

PLoS One. 2019 Jan 23;14(1):e0211115. doi: 10.1371/journal.pone.0211115. eCollection 2019.

Abstract

Hydropeaking is the rapid change in the water flow downstream of a hydropower plant, driven by changes in daily electricity demand. These fluctuations may produce negative effects in freshwater fish. To minimize these impacts, previous studies have proposed habitat enhancement structures as potential mitigation measures for salmonids. However, the recommendation of these mitigation measures for cyprinids remains scarce and their effects unknown. In this study, the effects of potential habitat mitigation structures under simulated hydropeaking and base-flow conditions are examined for Iberian barbel (Luciobarbus bocagei) in an indoor flume. Solid triangular pyramids and v-shaped structures were evaluated as potential flow-refuging areas and compared with a configuration without structures. A novel, interdisciplinary approach is applied to investigate individual and group responses to rapidly changing flows, by assessing physiological (glucose and lactate), movement behaviour (structure use, sprints and drifts) and the pressure distribution using a fish-inspired artificial lateral line flow sensor. The major findings of this study are four-fold: 1) Under hydropeaking conditions, the v-shaped structures triggered a lactate response and stimulated individual structure use, whereas solid structures did not elicit physiological adjustments and favoured individual and group structure use. Overall, both solid structures and their absence stimulated sprints and drifts. 2) The hydrodynamic conditions created in hydropeaking did not always reflect increased physiological responses or swimming activity. 3) Each event-structure combination resulted in unique hydrodynamic conditions which were reflected in the different fish responses. 4) The most relevant flow variable measured was the pressure asymmetry, which is caused by the vortex size and shedding frequency of the structures. Considering the non-uniform nature of hydropeaking events, and the observation that the fish responded differently to specific flow event-structure combinations, a diverse set of instream structures should be considered for habitat-based hydropeaking mitigation measures for Iberian barbel.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Behavior, Animal*
  • Cyprinidae / physiology*
  • Hydrostatic Pressure

Grants and funding

MJC was funded by the FLUVIO – River Restoration and Management Doctoral Programme from the Fundação para a Ciência e Tecnologia, https://www.fct.pt/, Portugal (grant No SFRH/BD/52517/2014). IB was funded by Fundação para a Ciência e Tecnologia, https://www.fct.pt/, Portugal (grant No SFRH/BPD/90832/2012). This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727830, http://www.fithydro.eu/. JAT contribution has been funded in part by the Sihtasutus Eesti Teadusagentuur (ETAg), https://www.etis.ee/, Estonia, through the projects "Bioinspired Ecohydraulic Sensor Array for Laboratory and Insitu Flow Measurements" (grant agreement No PUT1690) and "Octavo" (grant agreement No B53). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.