Variation within Lactuca spp. for Resistance to Impatiens necrotic spot virus

Plant Dis. 2018 Feb;102(2):341-348. doi: 10.1094/PDIS-06-17-0790-RE. Epub 2017 Nov 21.

Abstract

Lettuce (Lactuca sativa L.) production in coastal California, one of the major lettuce-producing areas of the United States, is regularly affected by outbreaks of Impatiens necrotic spot virus (INSV), a member of the genus Orthotospovirus. Transmission of INSV among lettuce crops in this growing region has been attributed predominantly to the western flower thrips (Frankliniella occidentalis). INSV is acquired by first- or second-instar thrips nymphs feeding on infected host plants (not necessarily lettuce). The virus replicates within the insect vector, and is transmitted to new plants by adult thrips as they feed on epidermal and mesophyll cells of susceptible host plants. All currently grown cultivars of lettuce are susceptible to the disease. Screening lettuce for resistance to INSV under field conditions is problematic because natural infections appear sporadically and the virus is not evenly distributed across infected fields. We have developed a greenhouse-based assay that uses viruliferous thrips in combination with mechanical inoculation that allows dependable, year-round screening for resistance. In all, 89 cultivars, breeding lines, and plant introductions of cultivated lettuce, together with 53 accessions from 11 other Lactuca spp., 4 accessions from two dandelion (Taraxacum) species, and 4 tomato (Solanum lycopersicum L.) lines were evaluated for resistance to INSV. All tested material was susceptible to INSV to varying degrees, with the exception of two tomato lines that carry the Sw-5 gene that confers resistance to Tomato spotted wilt virus, a virus closely related to INSV. In cultivated lettuce, a partial resistance to INSV was observed in cultivars Amazona, Ancora, Antigua, Commodore, Eruption, Iceberg, La Brillante, Merlot, Telluride, and Tinto. Limited comparison of the greenhouse-based screening results with the data from opportunistic evaluations of resistance on 775 lettuce accessions from six field trials indicates consistency of results from both greenhouse and field environments. The most resistant lettuce accessions are being incorporated into our breeding program for introgression of resistance into lettuce breeding lines.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crop Production / methods*
  • Disease Resistance*
  • Lactuca / virology*
  • Plant Breeding
  • Plant Diseases / virology*
  • Species Specificity
  • Tospovirus / physiology*