Ileal transcriptome analysis in obese rats induced by high-fat diets and an adenoviral infection

Int J Obes (Lond). 2019 Nov;43(11):2134-2142. doi: 10.1038/s41366-019-0323-2. Epub 2019 Jan 22.

Abstract

Background: Obesity has become a worldwide epidemic affecting millions of people. Obesity and associated health consequences tend to be complicated by diverse causes and multi-systemic involvement. Previous studies have investigated obesity induced by a single factor, such as a high-fat diet (HF) of typical energy-dense food and infection by an adipogenic virus, such as a widely studied human adenovirus serotype 36 (Ad-36). In this study, we hypothesized and investigated the synergistic effect of two causal factors, HF and Ad-36, in obesity induction.

Methods: The 7-week-old Wistar rats (n = 1214/group) were randomly divided into weight-matched groups and induced for obesity with mock-control, HF, Ad-36, or HF + Ad-36 for 8-30 weeks, and compared for obesity phenotype. A global transcriptomic RNA-Seq analysis was used to profile signature gene response pathways in ileal tissues from 8-week control and obese animals during this early phase of obesity induction.

Results: HF only and particularly co-administration of Ad-36 and HF (HF + Ad-36) induced significant obesity in rats (p < 0.05 or p < 0.005). Compared with either Ad-36 or HF alone, HF + Ad-36 treatment significantly aggravates obesity in rats regarding body weight (n = 12-14/group) and adiposity index (n = 6-7). Genome-wide transcriptomic analyses of intestinal tissues revealed signature genes on an inter-systemic scale, including many genes in the pathways of circadian rhythm and antiviral immunity focusing on IFN signaling.

Conclusions: Ad-36 exacerbated the induction of obesity in rats compared with those treated with HF alone. Gene-responsive pathways involved in circadian rhythm and antiviral immunity in ileal tissues were significantly (p < 0.05, and FDR < 0.01) regulated during the early phase of obesity induction. This study provided a co-factorial model for obesity induction and profiled molecular targets for further validation and molecular manipulation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adenoviridae Infections / metabolism*
  • Animals
  • Diet, High-Fat*
  • Ileum / metabolism*
  • Obesity / metabolism*
  • Rats
  • Rats, Wistar
  • Transcriptome / genetics
  • Transcriptome / physiology*