An Improved Adaptive Compensation H∞ Filtering Method for the SINS' Transfer Alignment Under a Complex Dynamic Environment

Sensors (Basel). 2019 Jan 19;19(2):401. doi: 10.3390/s19020401.

Abstract

Transfer alignment on a moving base under a complex dynamic environment is one of the toughest challenges in a strapdown inertial navigation system (SINS). With the aim of improving rapidity and accuracy, velocity plus attitude matching is applied in the transfer alignment model. Meanwhile, the error compensation model is established to calibrate and compensate the errors of inertial sensors online. To suppress the filtering divergence during the process of transfer alignment, this paper proposes an improved adaptive compensation H∞ filtering method. The cause of filtering divergence has been analyzed carefully and the corresponding adjustment and optimization have been made in the proposed adaptive compensation H∞ filter. In order to balance accuracy and robustness of the transfer alignment system, the robustness factor of the adaptive compensation H∞ filter can be dynamically adjusted according to the complex external environment. The aerial transfer alignment experiments illustrate that the adaptive compensation H∞ filter can effectively improve the transfer alignment accuracy and the pure inertial navigation accuracy under a complex dynamic environment, which verifies the advantage of the proposed method.

Keywords: adaptive compensation; complex dynamic environment; filtering divergence; robustness factor; strapdown inertial navigation system (SINS); transfer alignment.