Elevated Plus Maze Test Combined with Video Tracking Software to Investigate the Anxiolytic Effect of Exogenous Ketogenic Supplements

J Vis Exp. 2019 Jan 7:(143). doi: 10.3791/58396.

Abstract

The overall goal of this study is to describe the methodology of the elevated plus maze (EPM) test in combination with a video tracking software. The purpose of the method is to document the effect of various potential anxiolytic treatments on laboratory rodent models. The EPM test is based on the rodents' proclivity toward protected, enclosed dark spaces and unconditioned fear of open spaces and heights, and their innate intense motivation to explore novel environments. The EPM test is a widely used behavioral test for investigating the anxiolytic or anxiogenic responses of rodents given drugs that are known to affect behavior. Observation demonstrating a decreased proportion of time spent on closed arms, an increased proportion of time spent on open arms, a reduced number of entries to closed arms, and an elevated number of entries to open arms measured by the EPM test may reflect reduced anxiety levels. Using this method, the effect of exogenous ketone supplements on anxiety-related behavior is tested in Sprague Dawley (SPD) rats. Exogenous ketone supplements are chronically fed to the rats for 83 days or subchronically and acutely orally gavaged, daily for 7 days, before conducting the EPM test. Behavioral data collection is performed using the SMART video tracking system by a blinded observer at the end of the treatments. The main findings indicate that the EPM test is an effective method to detect the ketone supplement-induced anxiolytic effect and can be considered a sensitive measure to assess changes in anxiety behavior associated with drug- or metabolic-based therapies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Animals
  • Anti-Anxiety Agents / pharmacology
  • Anti-Anxiety Agents / therapeutic use*
  • Male
  • Maze Learning / drug effects*
  • Mice
  • Rats
  • Rats, Sprague-Dawley
  • Software
  • Videotape Recording / methods*

Substances

  • Anti-Anxiety Agents