Large-Size Single-Crystal Oligothiophene-Based Monolayers for Field-Effect Transistors

ACS Appl Mater Interfaces. 2019 Feb 13;11(6):6315-6324. doi: 10.1021/acsami.8b20700. Epub 2019 Feb 4.

Abstract

High structural quality of crystalline organic semiconductors is the basis of their superior electrical performance. Recent progress in quasi two-dimensional (2D) organic semiconductor films challenges bulk single crystals because both demonstrate competing charge-carrier mobilities. As the thinnest molecular semiconductors, monolayers offer numerous advantages such as unmatched flexibility and light transparency as well they are an excellent platform for sensing. Oligothiophene-based materials are among the most promising ones for light-emitting applications because of the combination of efficient luminescence and decent charge-carrier mobility. Here, we demonstrate single-crystal monolayers of unprecedented structural order grown from four alkyl-substituted thiophene and thiophene-phenylene oligomers. The monolayer crystals with lateral dimensions up to 3 mm were grown from the solution on substrates with various surface energies and roughness by drop or spin-casting with subsequent slow solvent evaporation. Our data indicate that 2D crystallization resulting in single-crystal monolayers occurs at the receding gas-solution-substrate contact line. The structural properties of the monolayers were studied by grazing-incidence X-ray diffraction/reflectivity, atomic force and differential interference contrast microscopies, and imaging spectroscopic ellipsometry. These highly ordered monolayers demonstrated an excellent performance in organic field-effect transistors approaching the best values reported for the thiophene or thiophene-phenylene oligomers. Our findings pave the way for efficient monolayer organic electronics highlighting the high potential of simple solution-processing techniques for the growth of large-size single-crystal monolayers with excellent structural order and electrical performance competing against bulk single crystals.

Keywords: charge-carrier mobility; grazing-incidence X-ray diffraction; oligo(thiophene−phenylene); organic field-effect transistor; organic monolayer; organic single crystal.