Assessment of in vivo genotoxicity of citrated-coated silver nanoparticles via transcriptomic analysis of rabbit liver tissue

Int J Nanomedicine. 2019 Jan 8:14:393-405. doi: 10.2147/IJN.S174515. eCollection 2019.

Abstract

Background: Silver nanoparticles (AgNPs) are widely used in industrial and household applications, arousing concern regarding their safety in humans. The risks posed by stabilizer-coated AgNPs continue to be unclear, and assessing their toxicity is for an understanding of the safety issues involved in their use in various applications.

Purpose: We aimed to investigated the long-term toxicity of citrate-coated silver nanoparticles (cAgNPs) in liver tissue using several toxicity tests and transcriptomic analysis at 7 and 28 days after a single intravenous injection into rabbit ear veins (n=4).

Materials and methods: The cAgNPs used in this study were in the form of a 20% (w/v) aqueous solution, and their size was 7.9±0.95 nm, measured using transmission electron microscopy. The animal experiments were performed based on the principles of good laboratory practice.

Results: Our results showed that the structure and function of liver tissue were disrupted due to a single exposure to cAgNPs. In addition, in vivo comet assay showed unrepaired genotoxicity in liver tissue until 4 weeks after a single injection, suggesting a potential carcinogenic effect of cAgNPs. In our transcriptomic analysis, a total of 244 genes were found to have differential expression at 28 days after a single cAgNP injection. Carefully curated pathway analysis of these genes using Pathway Studio and Ingenuity Pathway Analysis tools revealed major molecular networks responding to cAgNP exposure and indicated a high correlation of the genes with inflammation, hepatotoxicity, and cancer. Molecular validation suggested potential biomarkers for assessing the toxicity of accumulated cAgNPs.

Conclusion: Our investigation highlights the risk associated with a single cAgNP exposure with unrepaired damage persisting for at least a month.

Keywords: differentially expressed genes; liver toxicity; molecular pathway analysis; nanotoxicity; prolonged tissue damage.

MeSH terms

  • Animals
  • Biomarkers / metabolism
  • Citric Acid / chemistry*
  • Comet Assay
  • DNA Damage
  • Gene Expression Profiling*
  • Gene Regulatory Networks / drug effects
  • Liver / drug effects
  • Liver / metabolism*
  • Liver / pathology
  • Metal Nanoparticles / chemistry*
  • Microscopy, Electron, Transmission
  • Mutagens / toxicity*
  • Oxidative Stress / drug effects
  • Rabbits
  • Signal Transduction / drug effects
  • Silver / chemistry
  • Silver / toxicity*

Substances

  • Biomarkers
  • Mutagens
  • Citric Acid
  • Silver