Modeling of Osmotic Dehydration of Apples in Sugar Alcohols and Dihydroxyacetone (DHA) Solutions

Foods. 2019 Jan 9;8(1):20. doi: 10.3390/foods8010020.

Abstract

The purpose of this paper is twofold: on the one hand, we verify effectiveness of alternatives solutes to sucrose solution as osmotic agents, while on the other hand we intend to analyze modeling transfer parameters, using different models. There has also been proposed a new mass transfer parameter-true water loss, which includes actual solid gain during the process. Additional consideration of a new ratio (Cichowska et al. Ratio) can be useful for better interpretation of osmotic dehydration (OD) in terms of practical applications. Apples v. Elise were dipped into 30% concentrated solutions of erythritol, xylitol, maltitol, and dihydroxyacetone (DHA) to remove some water from the tissue. To evaluate the efficiency of these solutes, 50% concentrated sucrose solution was used as a control. All of the tested osmotic agent, except maltitol, were effective in the process as evidenced by high values in the true water loss parameter. Solutions of erythritol and xylitol in 30% concentrate could be an alternative to sucrose in the process of osmotic dehydration. Peleg's, Kelvin⁻Voigt, and Burgers models could fit well with the experimental data. modeling of mass transfer parameters, using Peleg's model can be satisfactorily supplemented by Kelvin⁻Voigt and Burgers model for better prediction of OD within the particular periods of the process.

Keywords: dihydroxyacetone; modeling; osmotic dehydration; polyols; sugar alcohols; water loss.