TGF-β-induced alternative splicing of TAK1 promotes EMT and drug resistance

Oncogene. 2019 Apr;38(17):3185-3200. doi: 10.1038/s41388-018-0655-8. Epub 2019 Jan 9.

Abstract

Transforming growth factor-β (TGF-β) is major inducer of epithelial-to-mesenchymal transition (EMT), which associates with cancer cell metastasis and resistance to chemotherapy and targeted drugs, through both transcriptional and non-transcriptional mechanisms. We previously reported that, in cancer cells, heightened mitogenic signaling allows TGF-β-activated Smad3 to interact with poly(RC) binding protein 1 (PCBP1) and together they regulate many alternative splicing events that favors expression of protein isoforms essential for EMT, cytoskeletal rearrangement, and adherens junction signaling. Here we show that the exclusion of TGF-β-activated kinase 1 (TAK1) variable exon 12 requires another RNA-binding protein, Fox-1 homolog 2 (Rbfox2), which binds intronic sequences in front of exon 12 independently of the Smad3-PCBP1 complex. Functionally, exon 12-excluded TAK1∆E12 and full-length TAK1FL are distinct. The short isoform TAK1∆E12 is constitutively active and supports TGF-β-induced EMT and nuclear factor kappa B (NF-κB) signaling, whereas the full-length isoform TAK1FL promotes TGF-β-induced apoptosis. These observations offer a harmonious explanation for how a single TAK1 kinase can mediate the opposing responses of cell survival and apoptosis in response to TGF-β. They also reveal a propensity of the alternatively spliced TAK1 isoform TAK1∆E12 to cause drug resistance due to its activity in supporting EMT and NF-κB survival signaling.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Alternative Splicing / genetics*
  • Animals
  • Apoptosis / genetics
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / genetics*
  • Epithelial-Mesenchymal Transition / genetics*
  • Humans
  • MAP Kinase Kinase Kinases / genetics*
  • Mice
  • Phosphorylation / genetics
  • Protein Isoforms / genetics
  • Repressor Proteins / genetics
  • Signal Transduction / genetics
  • Smad3 Protein / genetics
  • Transcription, Genetic / genetics
  • Transforming Growth Factor beta / genetics*

Substances

  • Protein Isoforms
  • Repressor Proteins
  • Smad3 Protein
  • Transforming Growth Factor beta
  • MAP Kinase Kinase Kinases
  • MAP kinase kinase kinase 7