Ultrastiff, Tough, and Healable Ionic-Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures

ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5441-5454. doi: 10.1021/acsami.8b20520. Epub 2019 Jan 23.

Abstract

We report the ultrastiff and tough poly(acrylamide- co-acrylic acid)/Na-alginate/Fe3+ (P(AM- co-AA)/Na-alginate/Fe3+) hydrogel via the formation of hybrid ionic-hydrogen bond cross-linking networks. The optimal P(AM- co-AA)/Na-alginate/Fe3+ hydrogel possessed super high elastic modulus (∼24.6 MPa), tensile strength (∼10.4 MPa), compression strength (∼44 MPa), and toughness (∼4800 J/m2). The P(AM- co-AA)/Na-alginate/Fe3+ hydrogel was highly stable and maintained its superior mechanical properties in 0.5-2 M NaCl solution, aqueous solution with pH ranging from 4 to 10. The ionic cross-linking networks of the P(AM- co-AA)/Na-alginate/Fe3+ hydrogels can be locally and selectively dissociated by treating with aqueous NaOH solution with pH of 13 for 1 min and reformed by locally adding the additional Fe3+ solutions, making the hydrogels healable and cohesive. The healed hydrogels from the cutting surfaces can bear a tensile strength of up to 7.1 MPa. Various complex hydrogel structures can be constructed by using the P(AM- co-AA)/Na-alginate/Fe3+ hydrogels as building blocks via the adhesion of as-prepared hydrogels.

Keywords: complex hydrogel structure; healable; ionic cross-linked hydrogels; saline-resistance; ultrastiff.