Faster R-CNN and Geometric Transformation-Based Detection of Driver's Eyes Using Multiple Near-Infrared Camera Sensors

Sensors (Basel). 2019 Jan 7;19(1):197. doi: 10.3390/s19010197.

Abstract

Studies are being actively conducted on camera-based driver gaze tracking in a vehicle environment for vehicle interfaces and analyzing forward attention for judging driver inattention. In existing studies on the single-camera-based method, there are frequent situations in which the eye information necessary for gaze tracking cannot be observed well in the camera input image owing to the turning of the driver's head during driving. To solve this problem, existing studies have used multiple-camera-based methods to obtain images to track the driver's gaze. However, this method has the drawback of an excessive computation process and processing time, as it involves detecting the eyes and extracting the features of all images obtained from multiple cameras. This makes it difficult to implement it in an actual vehicle environment. To solve these limitations of existing studies, this study proposes a method that uses a shallow convolutional neural network (CNN) for the images of the driver's face acquired from two cameras to adaptively select camera images more suitable for detecting eye position; faster R-CNN is applied to the selected driver images, and after the driver's eyes are detected, the eye positions of the camera image of the other side are mapped through a geometric transformation matrix. Experiments were conducted using the self-built Dongguk Dual Camera-based Driver Database (DDCD-DB1) including the images of 26 participants acquired from inside a vehicle and the Columbia Gaze Data Set (CAVE-DB) open database. The results confirmed that the performance of the proposed method is superior to those of the existing methods.

Keywords: driver’s eye detection; faster R-CNN; gaze tracking; geometric transformation; shallow CNN.

MeSH terms

  • Attention / physiology*
  • Automobile Driving*
  • Eye Movements / physiology*
  • Humans
  • Neural Networks, Computer*