Multiphoton Tomography with Linear Optics and Photon Counting

Phys Rev Lett. 2018 Dec 21;121(25):250402. doi: 10.1103/PhysRevLett.121.250402.

Abstract

Determining an unknown quantum state from an ensemble of identical systems is a fundamental, yet experimentally demanding, task in quantum science. Here we study the number of measurement bases needed to fully characterize an arbitrary multimode state containing a definite number of photons, or an arbitrary mixture of such states. We show this task can be achieved using only linear optics and photon counting, which yield a practical though nonuniversal set of projective measurements. We derive the minimum number of measurement settings required and numerically show that this lower bound is saturated with random linear optics configurations, such as when the corresponding unitary transformation is Haar random. Furthermore, we show that for N photons, any unitary 2N design can be used to derive an analytical, though nonoptimal, state reconstruction protocol.