Evaluation of the mutagenic and cytostatic potential of aristolochic acid (3,4-methylenedioxy-8-methoxy-10-nitrophenanthrene-1-carboxylic acid) and several of its derivatives

Mutat Res. 1988 Dec;206(4):447-54. doi: 10.1016/0165-1218(88)90052-3.

Abstract

Aristolochic acid (1), a constituent of Aristolochia species, has been used for medicinal purposes since the Graeco-Roman period. Following the observation that the compound was mutagenic and carcinogenic, it was removed from pharmaceutical products. Consistent with previous reports, we have found that 1 serves as a direct-acting mutagen in Salmonella typhimurium strains TA100, TA102, TA1537 and TM677, but was not active in the nitroreductase-deficient strains TA98NR and TA100NR. However, aristolic acid (2), a compound that differs in structure only by the absence of the nitro group, was also found to be a direct-acting mutagen in Salmonella strains TA98, TA100, TA102, TA1537, and TM677, as well as strains TA98NR and TA100NR. Both compounds (1 and 2) were active mutagens when evaluated with cultured Chinese hamster ovary cells. Thus, in contrast to previous suggestions, the nitro group at position 10 is not required to induce a mutagenic response. Also, a series of structural relatives (the methyl esters of 1 and 2 (3 and 4, respectively), aristolochic acid-D (5), aristolactam (6), aristolactam A-II (7), and aristolactam-N-beta-D-glucoside (8)) were evaluated for mutagenic potential with Salmonella typhimurium strain TM677 and found to be inactive. Since compounds 3 and 4 were found to be active mutagens with Salmonella typhimurium strains TA98, TA100, TA102 and TA1537 (sufficient quantities of compounds 5-8 were not available for testing), differential sensitivity of the tester strains unrelated to mutagenic potential is suggested. Further, compounds 1, 2, and 6-8 were evaluated for potential to inhibit growth with cultured KB or P388 cells. P388 cells were substantially more sensitive, and compound 1 was the most active of the materials tested (ED5 = 0.58 microM). Compound 6 also demonstrated appreciable activity (ED50 = 4.2 microM), as did compound 8 (ED50 = 6.0 microM). It therefore appears that phenanthrene-ring substituents, in addition to the nitro group at position 10, serve important roles for biological potential. In considering the carcinogenic event induced by aristolochic acid, these functionalities should also be taken into account.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Aristolochic Acids*
  • Biotransformation
  • Cell Line
  • Cricetinae
  • Cricetulus
  • Female
  • Fibroblasts / drug effects
  • Mutagenicity Tests
  • Ovary
  • Phenanthrenes / pharmacology*
  • Rats
  • Salmonella typhimurium / drug effects*
  • Tumor Cells, Cultured / drug effects

Substances

  • Aristolochic Acids
  • Phenanthrenes
  • aristolochic acid I