Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications

Interface Focus. 2019 Feb 6;9(1):20180048. doi: 10.1098/rsfs.2018.0048. Epub 2018 Dec 14.

Abstract

At the current population growth rate, we will soon be unable to meet increasing food demands. As a consequence of this potential problem, considerable efforts have been made to enhance crop productivity by breeding, genetics and improving agricultural practices. While these techniques have traditionally been successful, their efficacy since the 'green revolution' has begun to significantly plateau. This stagnation of gains combined with the negative effects of climate change on crop yields has prompted researchers to develop novel and radical methods to increase crop productivity. Recent work has begun exploring the use of nanomaterials as synthetic probes to augment how plants use light. Photosynthesis in crops is often limited by their ability to absorb and exploit solar energy for photochemistry. The capacity to interact with and optimize how plants use light has the potential to increase the productivity of crops and enable the tailoring of crops for different environments and to compensate for predicted climate changes. Advances in the synthesis and surface modification of nanomaterials have overcome previous drawbacks and renewed their potential use as synthetic probes to enhance crop yields. Here, we review the current applications of functional nanomaterials in plants and will make an argument for the continued development of promising new nanomaterials and future applications in agriculture. This will highlight that functional nanomaterials have the clear potential to provide a much-needed route to enhanced future food security. In addition, we will discuss the often-ignored current evidence of nanoparticles present in the environment as well as inform and encourage caution on the regulation of nanomaterials in agriculture.

Keywords: food security; nanobionics; nanomaterials; photosynthesis.

Publication types

  • Review