Development of High-Performance Soft Robotic Fish by Numerical Coupling Analysis

Appl Bionics Biomech. 2018 Nov 27:2018:5697408. doi: 10.1155/2018/5697408. eCollection 2018.

Abstract

To design a soft robotic fish with high performance by a biomimetic method, we are developing a soft robotic fish using piezoelectric fiber composite (PFC) as a flexible actuator. Compared with the conventional rigid robotic fish, the design and control of a soft robotic fish are difficult due to large deformation of flexible structure and complicated coupling dynamics with fluid. That is why the design and control method of soft robotic fish have not been established and they motivate us to make a further study by considering the interaction between flexible structure and surrounding fluid. In this paper, acoustic fluid-structural coupling analysis is applied to consider the fluid effect and predict the dynamic responses of soft robotic fish in the fluid. Basic governing equations of soft robotic fish in the fluid are firstly described. The numerical coupling analysis is then carried out based on different structural parameters of soft robotic fish. Through the numerical analysis, a new soft robotic fish is finally designed, and experimental evaluation is performed. It is confirmed that the larger swimming velocity and better fish-like swimming performance are obtained from the new soft robotic fish. The new soft robotic fish is developed successfully for high performance.