Factors influencing chemical quality of composted poultry waste

Saudi J Biol Sci. 2018 Dec;25(8):1678-1686. doi: 10.1016/j.sjbs.2016.09.012. Epub 2016 Sep 12.

Abstract

The need for organic recycling is justified in the case of poultry waste because after ensuring hygienization there is a chance of obtaining a compost with substantial fertilizer value. Organic recycling of slaughter waste has its justification in sustainable development and retardation of resources. In the research being described, composting of hydrated poultry slaughterhouse waste with maize straw was carried out. Combinations with fodder yeast and postcellulose lime were also introduced in order to modify chemical and physicochemical properties of the mixtures. The experiment was carried out within 110 days in 1.2 × 1.0 × 0.8 m laboratory reactors. Temperature of the biomass was recorded during composting, and the biomass was actively aerated through a perforated bottom. Composting of substrates selected in such a way caused losses of some elements in gaseous form, an increase in concentration of other elements, and changes in relationships between elements. The ability to select substrates influences compost quality. This ability is determined by chemical indicators. Among other things, compost evaluation based on carbon to nitrogen ratio shows the intensity of the composting process and possible nitrogen losses. The addition of slaughter waste to maize straw reduced the content of individual fractions of carbon in the composts, whereas the addition of postcellulose lime intensified that process. The addition of fodder yeast significantly increased the phosphorus content in the compost. Since iron compounds were used in the processing of poultry carcasses, composts that were based on this material had an elevated iron content. The applied postcellulose lime significantly increased the copper, zinc, chromium, nickel, and lead contents. Proper selection of substrates for composting of hydrated poultry slaughterhouse waste allows to obtain a compost with chemical properties that create favorable conditions for natural application of that compost. Addition of large quantities of postcellulose lime to the composting process leads to obtaining an organic-mineral substratum for cultivation or to obtaining an agent that improves soil properties.

Keywords: Compost; Fodder yeast; Fractional composition of humus; Nutrients; Postcellulose lime; Poultry slaughterhouse waste.