Plant evolution in alkaline magnesium-rich soils: A phylogenetic study of the Mediterranean genus Hormathophylla (Cruciferae: Alysseae) based on nuclear and plastid sequences

PLoS One. 2018 Dec 21;13(12):e0208307. doi: 10.1371/journal.pone.0208307. eCollection 2018.

Abstract

Habitats with alkaline edaphic substrates are often associated with plant speciation and diversification. The tribe Alysseae, in the family Brassicaceae, epitomizes this evolutionary trend. In this lineage, some genera, like Hormathophylla, can serve as a good case for testing the evolutionary framework. This genus is centered in the western Mediterranean. It grows on different substrates, but mostly on alkaline soils. It has been suggested that diversification in many lineages of the tribe Alysseae and in the genus Hormathophylla is linked to a tolerance for high levels of Mg+2 in xeric environments. In this study, we investigated the controversial phylogenetic placement of Hormathophylla in the tribe, the generic limits and the evolutionary relationships between the species using ribosomal and plastid DNA sequences. We also examined the putative association between the evolution of different ploidy levels, trichome morphology and the type of substrates. Our analyses demonstrated the monophyly of the genus Hormathophylla including all previously described species. Nuclear sequences revealed two lineages that differ in basic chromosome numbers (x = 7 and x = 8 or derived 11, 15) and in their trichome morphology. Contrasting results with plastid genes indicates more complex relationships between these two lineages involving recent hybridization processes. We also found an association between chloroplast haplotypes and substrate, especially in populations growing on dolomites. Finally, our dated phylogeny demonstrates that the origin of the genus took place in the mid-Miocene, during the establishment of temporal land bridges between the Tethys and Paratethys seas, with a later diversification during the upper Pliocene.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkalies / chemistry*
  • Base Sequence
  • Bayes Theorem
  • Brassicaceae / genetics*
  • Brassicaceae / ultrastructure
  • Cell Nucleus / genetics*
  • Chromosomes, Plant / genetics
  • Genetic Variation
  • Haplotypes / genetics
  • Likelihood Functions
  • Magnesium / chemistry*
  • Mediterranean Region
  • Phylogeny*
  • Phylogeography
  • Plastids / genetics*
  • Ploidies
  • Ribosomes / genetics
  • Soil / chemistry*
  • Species Specificity
  • Time Factors
  • Trichomes / ultrastructure

Substances

  • Alkalies
  • Soil
  • Magnesium

Grants and funding

The present research was supported with the following funding sources: 1. Contrato Puente, Funder: Universidad de Almería, Award Number: Contrato Puente, Plan Propio 2016. Authors who received a salary: Esteban Salmerón Sánchez; 2. European Social Fund and Czech Republic Government, Award Number: CZ.1.07/2.3.00/30.0022. Authors who received a salary: Stanislav Španiel; 3. Czech Science Foundation, Award Number: 16-10809S). Authors who received a salary: Stanislav Španiel; 4. Spanish Ministry of Science and Innovation, Award Number: CGL2007-63563; 5. Consejeria de Economía, Innovación y Ciencia of the Junta de Andalucia, co-financed with FEDER, Award Number: PO7-RNM-03217. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.