Conducting Excitation and Emission Spectra in the IR Regime: Frequency-Domain Time-Resolved Vibrational Four Wave Mixing Spectroscopy

J Phys Chem A. 2019 Jan 17;123(2):625-628. doi: 10.1021/acs.jpca.8b12077. Epub 2019 Jan 3.

Abstract

We report new features of recently developed ultrafast coherent multidimensional spectroscopy (CMDS), an optical analogue to multidimensional NMR. By using both frequency- and time-domain nonlinear four wave mixing methods, CMDS is able to directly observe coherence transfer (CT), the coherent quantum mechanical analogue of population relaxation. Using a mixture of acetonitrile and magnesium perchlorate (1.0 M) as a model system, we demonstrated that this one color- and population-involving CT process makes CMDS capable of measuring samples with features that mimic excitation and emission spectral measurements in fluorescence spectroscopy. With the new capabilities, one might develop CMDS into a versatile vibrational tool for revealing the role of coherence as a design element in realizing a function. Furthermore, CT-based vibrational resonance energy transfer (VRET) methods may be developed for label-free biosensing and imaging, such as those demonstrated by fluorescence resonance energy transfer (FRET).