Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality

Plant Biotechnol J. 2019 Jun;17(6):1037-1047. doi: 10.1111/pbi.13035. Epub 2018 Dec 19.

Abstract

Steviol glycosides (SGs) are extracted from Stevia leaves for use as a natural sweetener. Among SGs, stevioside is most abundant in leaf extracts followed by rebaudioside A (Reb A). However, Reb A is of particular interest because of its sweeter and more pleasant taste compared to stevioside. Therefore, the development of new Stevia varieties with a higher Reb A to stevioside ratio would be desirable for the production of higher quality natural sweeteners. Here, we generated transgenic Stevia plants overexpressing Stevia UDP-glycosyltransferase 76G1 (SrUGT76G1) that is known to convert stevioside to Reb A through 1,3-β-d-glucosylation in vitro. Interestingly, by overexpressing SrUGT76G1, the Reb A to stevioside ratio was drastically increased from 0.30 in wild-type (WT) plants up to 1.55 in transgenic lines without any significant changes in total SGs content. This was contributed by a concurrent increase in Reb A content and a decrease in stevioside content. Additionally, we were able to find an increase in the Reb C to dulcoside A ratio in transgenic lines. Using the glutathione S-transferase-tagged SrUGT76G1 recombinant protein for an in vitro glucosyltransferase assay, we further demonstrated that Reb C can be produced from the glucosylation of dulcoside A by SrUGT76G1. Transgenic Stevia plants having higher Reb A to stevioside ratio were visually indistinguishable from WT plants. Taken together, our results demonstrate that the overexpression of SrUGT76G1 in Stevia is an effective way to generate new Stevia varieties with higher proportion of the more preferred Reb A without compromising on plant development.

Keywords: Reb A/stevioside ratio; Reb C/dulcoside A ratio; SrUGT76G1; Stevia; steviol glycosides.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Diterpenes, Kaurane* / chemistry
  • Food Technology
  • Gene Expression*
  • Glucosides* / chemistry
  • Glucosides* / genetics
  • Glycosyltransferases / genetics
  • Plant Leaves / chemistry
  • Plant Leaves / genetics
  • Stevia* / chemistry
  • Stevia* / genetics
  • Uridine Diphosphate / genetics

Substances

  • Diterpenes, Kaurane
  • Glucosides
  • stevioside
  • Uridine Diphosphate
  • Glycosyltransferases