Formulation of Bioerodible Ketamine Microparticles as an Analgesic Adjuvant Treatment Produced by Supercritical Fluid Polymer Encapsulation

Pharmaceutics. 2018 Dec 6;10(4):264. doi: 10.3390/pharmaceutics10040264.

Abstract

Pain is inadequately relieved by escalating doses of a strong opioid analgesic such as morphine in up to 25% of patients with cancer-related severe pain complicated by a neuropathic (nerve damage) component. Hence, there is an unmet medical need for research on novel painkiller strategies. In the present work, we used supercritical fluid polymer encapsulation to develop sustained-release poly(lactic-co-glycolic acid) (PLGA) biodegradable microparticles containing the analgesic adjuvant drug ketamine, for injection by the intrathecal route. Using this approach with a range of PLGA co-polymers, drug loading was in the range 10⁻60%, with encapsulation efficiency (EE) of 60⁻100%. Particles were mainly in the size range 20⁻45 µm and were produced in the absence of organic solvents and surfactants/emulsifiers. Investigation of the ketamine release profiles from these PLGA-based microparticles in vitro showed that release took place over varying periods in the range 0.5⁻4.0 weeks. Of the polymers assessed, the ester end-capped PLGA5050DLG-1.5E gave the best-controlled release profile with drug loading at 10%.

Keywords: analgesic adjuvant; cancer pain; drug delivery; ketamine; poly(lactic-co-glycolic acid) (PLGA); sustained release.