IR780 loaded perfluorohexane nanodroplets for efficient sonodynamic effect induced by short-pulsed focused ultrasound

Ultrason Sonochem. 2019 May:53:59-67. doi: 10.1016/j.ultsonch.2018.12.021. Epub 2018 Dec 12.

Abstract

Inertial cavitation is crucial for the therapeutic effects of sonodynamic. Therefore, approaches that can induce highly efficient inertial cavitation should be of benefit for sonodynamic effect. Our previous study demonstrated that highly efficient inertial cavitation activity can be achieved through the combinatorial use of a short-pulsed focused ultrasound (SPFU) sequence and perfluorohexane (PFH) nanodroplets. Herein, we applied the SPFU sequence and PFH nanodroplets in sonodynamic. A hydrophobic sonosensitizer, IR780 iodine, was loaded inside denatured bovine serum albumin-shelled PFH (PFH@BSA-IR780) nanodroplets. The sonodynamic efficacy was validated by treating HeLa cervical cancer cells. Under SPFU exposure, PFH@BSA-IR780 nanodroplets were highly effective in promoting reactive oxygen species generation and inducing cancer cell death. A significant decrease in cell viability was achieved within just 10 s. Besides the cytotoxicity of ROS, the mechanical bioeffects of inertial cavitation also led to severe cell death resulting from higher acoustic power or the longer treatment time. The application of the SPFU sequence coupled with PFH@BSA-IR780 nanodroplets is a promising strategy for efficient sonodynamic.

Keywords: Inertial cavitation; Perfluorohexane nanodroplet; Short-pulsed focused ultrasound; Sonodynamic effect.