Probing Energy Migration through Precise Control of Interfacial Energy Transfer in Nanostructure

Adv Mater. 2019 Feb;31(6):e1806308. doi: 10.1002/adma.201806308. Epub 2018 Dec 13.

Abstract

A novel mechanistic strategy for probing the energy migration through constructing the interfacial energy transfer (IET) in a core-shell-shell nanostructure is reported. In this design, the trilayer nanostructure is composed of a sensitizing core, a migratory interlayer, and a detective shell layer that interact with each other only by IET and the latter two shell layers are nonresponsive to the incident irradiation. This model is well applied in investigating the energy migration over the Tb, Gd, and Yb sublattices, and the results show that the Gd sublattice holds the best energy migratory performance. Moreover, the finding of energy migration over the Yb sublattice enables the 808 nm excited long-lived upconversion of Tb3+ and Eu3+ , which exhibits unique time-gating performance for information security. The results provide a facile and powerful nanosized model for an in-depth understanding of the fundamentals involving lanthanide interactions, which will further help excite new chances for the frontier applications of lanthanide-based luminescent materials.

Keywords: core-shell-shell nanostructure; energy migration; interfacial energy transfer; mechanistic study.