The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France

PLoS One. 2018 Dec 6;13(12):e0207459. doi: 10.1371/journal.pone.0207459. eCollection 2018.

Abstract

The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period.

Publication types

  • Historical Article
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaeology / methods
  • DNA, Ancient / analysis
  • DNA, Mitochondrial / analysis
  • DNA, Mitochondrial / genetics*
  • Europe / ethnology
  • France / ethnology
  • Gene Pool
  • Genetic Variation / genetics
  • Genetics, Population / methods
  • Genotype
  • Haplotypes
  • History, Ancient
  • Humans
  • United Kingdom
  • White People / genetics*

Substances

  • DNA, Ancient
  • DNA, Mitochondrial

Grants and funding

This study benefitted from excavation grant support from Ministère de la Culture et de la Communication, Service Régional de l'Archéologie de Basse-Normandie (number OA2033 and OA3123) and DRASM (Direction of submarine archaeological research), and from Department of Manche. This research was funded by a ministerial grant from the Research National Agency as a programme of prospects investments ANR-10-LABX-52 (http://www.agence-nationale-recherche.fr/). The study was also financially supported by a PhD research grant from the Ministère de l'Enseignement Supérieur et de la Recherche for CEF (http://www.enseignementsup-recherche.gouv.fr/). Part of the experiments presented (SNPs analyses) were performed at the Genomic and Sequencing Facility of Bordeaux, grants from the Conseil Régional d'Aquitaine n°20030304002FA and 20040305003FA, https://www.nouvelle-aquitaine.fr/, from the European Union, FEDER n°2003227 and from Investissements d'avenir, Convention attributive d'aide N°ANR-10-EQPX-16-01, http://www.agence-nationale-recherche.fr/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.