A posturographic procedure assessing balance disorders in Parkinson's disease: a systematic review

Clin Interv Aging. 2018 Nov 12:13:2301-2316. doi: 10.2147/CIA.S180894. eCollection 2018.

Abstract

Postural instability is common in Parkinson's disease (PD), often contributing to falls, injuries, and reduced mobility. In the clinical setting, balance disorder is commonly diagnosed using clinical tests and balance scales, but it is suggested that the most sensitive measurement is the force platform. The aim of this systematic review was to summarize the methods and various posturographic procedures used to assess the body balance and gait in PD. A systematic review was conducted of papers published from 2000 to 2017. Databases searched were PubMed and EBSCO. Studies must have involved patients with PD, used force platform or motion analysis system as a measurement tool, and described posturographic procedure. The Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the included studies. A total of 32 studies met the inclusion criteria. The PEDro scores ranged from 5 to 7 points. The analysis of the objective methods assessing balance disorders revealed a large discrepancy in the duration and procedures of measurements. The number of repetitions of each trial fluctuated between 1 and 8, and the duration of a single trial ranged from 10 to 60 seconds. Overall, there are many scales and tests used to assess the balance disorders and disabilities of people with PD. Although in many included studies the authors have used posturography as a method to evaluate the postural instability of PD patients, the results are contradictory. To solve this issue, it is indicated to establish a "gold standard" of procedures of measures of balance.

Keywords: Parkinson’s disease; balance disorders; postural instability; posturography.

Publication types

  • Systematic Review

MeSH terms

  • Gait*
  • Humans
  • Neurologic Examination / methods*
  • Parkinson Disease / physiopathology*
  • Postural Balance*