Observation of Floquet Raman Transition in a Driven Solid-State Spin System

Phys Rev Lett. 2018 Nov 23;121(21):210501. doi: 10.1103/PhysRevLett.121.210501.

Abstract

We experimentally observe Floquet Raman transitions in the weakly driven solid-state spin system of a nitrogen-vacancy center in diamond. The periodically driven spin system simulates a two-band Wannier-Stark ladder model and allows us to observe coherent spin state transfer arising from a Raman transition mediated by Floquet synthetic levels. It also leads to the prediction of an analog photon-assisted Floquet Raman transition and dynamical localization in a driven two-level quantum system. The demonstrated rich Floquet dynamics offers new capabilities to achieve effective Floquet coherent control of a quantum system with potential applications in various types of quantum technologies based on driven quantum dynamics. In particular, the Floquet Raman system may be used as a quantum simulator for the physics of periodically driven systems.