Influence of Gradual Damage on the Structural Dynamic Behaviour of Composite Rotors: Experimental Investigations

Materials (Basel). 2018 Nov 29;11(12):2421. doi: 10.3390/ma11122421.

Abstract

Fibre-reinforced composite structures subjected to complex loads exhibit gradual damage behaviour with the degradation of the effective mechanical properties and changes in their structural dynamic behaviour. Damage manifests itself as a spatial increase in inter-fibre failure and delamination growth, resulting in local changes in stiffness. These changes affect not only the residual strength but, more importantly, the structural dynamic behaviour. In the case of composite rotors, this can lead to catastrophic failure if an eigenfrequency coincides with the rotational speed. The description and analysis of the gradual damage behaviour of composite rotors, therefore, provide the fundamentals for a better understanding of unpredicted structural phenomena. The gradual damage behaviour of the example composite rotors and the resulting damage-dependent dynamic behaviour were experimentally investigated under propagating damage caused by a combination of out-of-plane and in-plane loads. A novel observation is the finding that a monotonic increase in damage results in a non-monotonic frequency shift of a significant number of eigenfrequencies.

Keywords: composite rotor; damage propagation; gradual damage behaviour; modal properties; structural dynamic behaviour.