Time-Resolved Spectroscopic and Density Functional Theory Investigation of the Photogeneration of a Bifunctional Quinone Methide in Neutral and Basic Aqueous Solutions

Molecules. 2018 Nov 27;23(12):3102. doi: 10.3390/molecules23123102.

Abstract

Binol quinone methides (BQMs) can be generated from 1,1'-(2,2'-dihydroxy-1,1'-binaphthyl-6,6'-diyl)bis(N,N,N-trimethylmethanamiuium) bromide (BQMP-b) in a 1:1 MeCN:H₂O mixed solution via a ground state intramolecular proton transfer (GSIPT), as mentioned in our previously reported studies. Here, the photoreaction of BQMP-b in neutral and basic aqueous solution (pH = 7, 10, 12) was investigated to explore the possible mechanisms and the key intermediates produced in the process of the photoreaction and to examine whether they are different from those in a neutral mild-mixed MeCN:H₂O solution. The studies were conducted using femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman spectroscopy (ns-TR³) in conjunction with results from density functional theory (DFT) computations. The results showed that BQMP-b was deprotonated initially and produced BQMs species more effectively through an E1bc elimination reaction in a strong basic aqueous condition (pH = 12), which differed from the reaction pathway that took place in the solution with pH = 7 or 10. A related single naphthol ring molecule 1-(6-hydroxynaphthalen-2-yl)-N,N,N-trimethylmethanaminium bromide (QMP-b) that did not contain a second naphthol ring was also investigated. The related reaction mechanisms are elucidated in this work, and it is briefly discussed how the mechanisms vary as a function of aqueous solution pH conditions.

Keywords: DFT calculation; E1bc elimination reaction; bifunctional quinone methides; time-resolved resonance Raman.

MeSH terms

  • Indolequinones / chemistry*
  • Models, Chemical*
  • Photochemical Processes*
  • Spectrum Analysis, Raman
  • Water / chemistry*

Substances

  • Indolequinones
  • Water
  • quinone methide